class: center middle main-title section-title-3 # In-person<br>session 8 .class-info[ **March 6, 2025** .light[PMAP 8521: Program evaluation<br> Andrew Young School of Policy Studies ] ] --- name: outline class: title title-inv-8 # Plan for today .box-6.medium.sp-after-half[Matching and IPW] -- .box-5.medium.sp-after-half[Models vs. designs] -- .box-3.medium.sp-after-half[Interactions and regression] -- .box-1.medium.sp-after-half[Simple diff-in-diff] --- layout: false name: matching-ipw class: center middle section-title section-title-6 animated fadeIn # Matching and IPW --- layout: true class: middle --- .box-6.large[Can you talk more about<br>propensity scores and<br>"weirdness" weights?] .center.small[[Lecture slide](https://evalsp25.classes.andrewheiss.com/slides/07-slides.html#128)] --- .center[ <figure> <img src="img/07-class/fig-propensity-treated-untreated-1.png" alt="IPW weight histogram" title="IPW weight histogram" width="75%"> </figure> ] --- .center[ <figure> <img src="img/07-class/fig-propensity-weird-highlight-1.png" alt="IPW weight histogram" title="IPW weight histogram" width="75%"> </figure> ] --- .center[ <figure> <img src="img/07-class/fig-propensity-weighted-ate-1.png" alt="IPW weight histogram" title="IPW weight histogram" width="75%"> </figure> ] --- .box-6.large[Why not just control for confounders<br>instead of doing the whole matching/IPW dance?] --- .box-6.large[Do you have to use<br>logistic regression + OLS for IPW?] -- .box-inv-6[[No!](https://www.causalml-book.org/)] --- .box-6.large[Which should we use?<br>Matching or IPW?] --- .box-6.large[Can you walk through an example of<br>IPW and matching in class?] --- layout: false name: models-designs class: center middle section-title section-title-5 animated fadeIn # Models vs. designs --- layout: true class: middle --- .center[ <figure> <img src="img/08-class/2021-nobel-winners.jpg" alt="2021 econ Nobel winners" title="2021 econ Nobel winners" width="55%"> </figure> ] ??? - Card (and Krueger): NJ/PA minimum wage + the beginning of this whole credibility revolution thing - Angrist: MHE and MM and making causal inference accessible - Imbens: A ton of CI stuff + attempting to bridge DAG world with situation-based world - https://twitter.com/NobelPrize/status/1447502627114205187 - PA/NJ - https://twitter.com/MaxCRoser/status/1447505582450151431 - https://twitter.com/Stanford/status/1447549033539637248 --- .center[ <figure> <img src="img/08-class/alan-krueger.jpg" alt="Alan Krueger" title="Alan Krueger" width="80%"> </figure> ] ??? Alan Krueger died by suicide in 2019 --- .center[ <figure> <img src="img/08-class/pa-nj-nobel.jpg" alt="Nobel PA/NJ" title="Nobel PA/NJ" width="57%"> </figure> ] --- layout: true class: middle --- .box-5.large[Design-based vs.<br>model-based inference] .box-inv-5[Special situations vs. controlling for stuff] --- .box-5.medium[How would you know when it is appropriate to use a quasi-experiment over an RCT?] --- layout: true class: title title-5 --- # Identification strategies .box-inv-5.small.sp-after[The goal of *all* these methods is to isolate<br>(or **identify**) the arrow between treatment → outcome] -- .box-inv-5.less-medium[Model-based identification] .float-left.center[.box-5[DAGs] .box-5[Matching] .box-5[Inverse probability weighting]] -- .box-inv-5.less-medium.sp-before[Design-based identification] .float-left.center[.box-5[Randomized controlled trials] .box-5[Difference-in-differences]] .float-left.center[.box-5[Regression discontinuity] .box-5[Instrumental variables]] --- # Model-based identification .box-inv-5[Use a DAG and *do*-calculus to isolate arrow] .pull-left[ <figure> <img src="04-slides_files/figure-html/edu-earn-adjust-1.png" alt="Education earnings DAG" title="Education earnings DAG" width="100%"> </figure> ] .pull-right[ .box-5[Core assumption:<br>selection on observables] .box-inv-5.small[Everything that needs to<br>be adjusted is measurable;<br>no unobserved confounding] .box-inv-5.small[**Big assumption!**] .box-inv-5.tiny[This is why lots of people don't like DAG-based adjustment] ] --- layout: false .center[ <figure> <img src="img/08-class/charles-ozzy.png" alt="King Charles and Ozzy Osbourne" title="King Charles and Ozzy Osbourne" width="50%"> </figure> ] --- layout: true class: title title-5 --- # Design-based identification .box-inv-5[Use a special situation to isolate arrow] .pull-left[ .box-5[RCTs] .box-inv-5.small[Use randomization<br>to remove confounding] .center[ <figure> <img src="05-slides_files/figure-html/experimental-dag-1.png" alt="RCT DAG" title="RCT DAG" width="60%"> </figure> ] ] -- .pull-right[ .box-5[Difference-in-differences] .box-inv-5.small[Use before/after & treatment/control<br>differences to remove confounding] .center[ <figure> <img src="08-slides_files/figure-html/min-wage-dag-1.png" alt="Diff-in-diff DAG" title="Diff-in-diff DAG" width="90%"> </figure> ] ] --- layout: true class: middle --- .box-5.large[Which is better or more credible?<br>RCTs, quasi experiments,<br>or DAG-based models?] --- .center[ <figure> <img src="img/08-class/causality-continuum.png" alt="The (wrong!) causality continuum" title="The (wrong!) causality continuum" width="90%"> </figure> ] --- .box-5.huge[There's no hierarchy!] --- layout: false name: interactions class: center middle section-title section-title-3 animated fadeIn # Interactions and regression --- class: middle .box-3.large[Can we talk more about interaction terms and how to interpret them?] --- class: middle .box-3.large[Regression is just fancy averages!] --- layout: false name: diff-in-diff class: center middle section-title section-title-1 animated fadeIn # Simple diff-in-diff --- .center[ <figure> <img src="img/08-class/lambeth-southwark-vauxhall.jpg" alt="Lambeth and Southwark-Vauxhall" title="Lambeth and Southwark-Vauxhall" width="70%"> </figure> ] --- class: middle .pull-left[ .box-1.medium[**1849**] .box-1[Cholera deaths per 100,000] .box-inv-1[Southwark & Vauxhall: **1,349**] .box-inv-1[Lambeth: **847**] ] .pull-right[ .box-1.medium[**1854**] .box-1[Cholera deaths per 100,000] .box-inv-1[Southwark & Vauxhall: **1,466**] .box-inv-1[Lambeth: **193**] ] --- .center[ <figure> <img src="img/08-class/bedtime-math.png" alt="Bedtime math" title="Bedtime math" width="45%"> </figure> ] --- .center[ <figure> <img src="img/08-class/bedtime-math-diff-diff.png" alt="Bedtime math diff-in-diff" title="Bedtime math diff-in-diff" width="100%"> </figure> ] --- layout: true class: middle --- .box-1.medium[When doing your subtracting to get<br>your differences in the matrix, is it better <br>to do the vertical or horizontal subtractions?] .box-1.medium[Are there situations where<br>one is preferable to the other?] --- .box-1.medium[Why are we learning<br>two ways to do diff-in-diff?<br>(2x2 matrix vs. `lm()`)] --- .box-1.large[What happened to confounding??] .box-1.medium[Now we're only looking<br>at just two "confounders"?] .box-1.medium[Should we still control for things?] ??? The parallel trends assumption takes care of that --- .box-1.large[Can you walk through an example of<br>diff-in-diff in class?]