# DAGs and potential outcomes

#### **Session 5**

PMAP 8521: Program evaluation Andrew Young School of Policy Studies

# **Plan for today**

*do*()ing observational causal inference

Potential outcomes

# do()ing observational causal inference

### Structural models

The relationship between nodes can be described with equations

$$\begin{aligned} \operatorname{Loc} &= f_{\operatorname{Loc}}(\operatorname{U1}) & & & \downarrow \\ \operatorname{Bkgd} &= f_{\operatorname{Bkgd}}(\operatorname{U1}) & & & \downarrow \\ \operatorname{JobCx} &= f_{\operatorname{JobCx}}(\operatorname{Edu}) & & & \downarrow \\ \operatorname{Edu} &= f_{\operatorname{Edu}}(\operatorname{Req}, \operatorname{Loc}, \operatorname{Year}) & & & \downarrow \\ \operatorname{Earn} &= f_{\operatorname{Earn}}(\operatorname{Edu}, \operatorname{Year}, \operatorname{Bkgd}, & & & \downarrow_{\operatorname{JobCx}} \\ & & & \operatorname{Loc}, \operatorname{JobCx}) \end{aligned}$$

Bkgd

Earn

### Structural models

### dagify() in ggdag forces you to think this way

```
egin{aligned} \mathrm{Earn} &= f_{\mathrm{Earn}}(\mathrm{Edu},\mathrm{Year},\mathrm{Bkgd},\ &&\mathrm{Loc},\mathrm{JobCx})\ &\mathrm{Edu} &= f_{\mathrm{Edu}}(\mathrm{Req},\mathrm{Loc},\mathrm{Year})\ &\mathrm{JobCx} &= f_{\mathrm{JobCx}}(\mathrm{Edu})\ &\mathrm{JobCx} &= f_{\mathrm{JobCx}}(\mathrm{Edu})\ &\mathrm{Bkgd} &= f_{\mathrm{Bkgd}}(\mathrm{U1})\ &\mathrm{Loc} &= f_{\mathrm{Loc}}(\mathrm{U1}) \end{aligned}
```

```
dagify(
 Earn ~ Edu + Year + Bkgd + Loc + JobCx,
 Edu ~ Req + Loc + Bkgd + Year,
 JobCx ~ Edu,
 Bkgd ~ U1,
 Loc ~ U1
)
```

### **Causal identification**

All these nodes are related; there's correlation between them all

We care about **Edu** → **Earn**, but what do we do about all the other nodes?



# **Causal identification**

### A causal effect is *identified* if the association between treatment and outcome is propertly stripped and isolated

### Paths and associations

### Arrows in a DAG transmit associations

### You can redirect and control those paths by "adjusting" or "conditioning"

# Three types of associations



### do-operator

Making an intervention in a DAG

$$P[Y \mid do(X=x)] \quad ext{or} \quad E[Y \mid do(X=x)]$$

#### **P** = probability distribution, or **E** = expectation/expected value

Y = outcome, X = treatment; x = specific value of treatment

$$E[Y \mid do(X = x)]$$

E[ Earnings | *do*(One year of college)]

E[ Firm growth | *do*(Government R&D funding)]

E[ Air quality | *do*(Carbon tax)]

E[ Juvenile delinquency | *do*(Truancy program)]

E[ Malaria infection rate | *do*(Mosquito net)]

### When you *do*() X, delete all arrows into it



### $E[\text{Earnings} \mid do(\text{College education})]$



# Undo()ing things

We want to know **P[Y | do(X)]** but all we have is observational data X, Y, and Z

 $P[Y \mid do(X)] \neq P(Y \mid X)$ 

Correlation isn't causation!

# Undo()ing things

Our goal with observational data: Rewrite **P[Y | do(X)]** so that it doesn't have a do() anymore (is "do-free")

### do-calculus

#### A set of three rules that let you manipulate a DAG in special ways to remove *do*() expressions

**The do-calculus** Let G be a CGM,  $G_{\overline{T}}$  represent G post-intervention (i.e with all links into T removed) and  $G_{\underline{T}}$  represent G with all links *out of* T removed. Let do(t) represent intervening to set a single variable T to t,

**Rule 1:**  $\mathbb{P}(y|do(t), z, w) = \mathbb{P}(y|do(t), z)$  if  $Y \perp W|(Z,T)$  in  $G_{\overline{T}}$ 

**Rule 2:**  $\mathbb{P}(y|do(t), z) = \mathbb{P}(y|t, z)$  if  $Y \perp T|Z$  in  $G_{\underline{T}}$ 

**Rule 3:**  $\mathbb{P}(y|do(t), z) = \mathbb{P}(y|z)$  if  $Y \perp T|Z$  in  $G_{\overline{T}}$ , and Z is not a decedent of T.

WAAAAAY beyond the score of this class! Just know it exists and computer algorithms can do it for you!

### Special cases of do-calculus

**Backdoor adjustment** 

**Frontdoor adjustment** 

### **Backdoor adjustment**

$$P[Y \mid do(X)] = \sum_Z P(Y \mid X, Z) imes P(Z)$$



↑ That's complicated!

The right-hand side of the equation means "the effect of X on Y after adjusting for Z"

There's no *do*() on that side!

### Frontdoor adjustment



 $S \rightarrow T$  is *d*-separated;  $T \rightarrow C$  is *d*-separated combine the effects to find  $S \rightarrow C$ 

# Moral of the story

If you can transform *do*() expressions to *do*-free versions, you can legally make causal inferences from observational data

Backdoor adjustment is easiest to see + dagitty and **ggdag** do this for you!

Fancy algorithms (found in the **causaleffect** package) can do the official *do*-calculus for you too

# Potential outcomes

### **Program effect**



### Some equation translations

Causal effect = 
$$\delta$$
 (delta)

$$\delta = P[Y \mid do(X)]$$

$$egin{aligned} \delta &= E[Y \mid do(X)] - E[Y \mid \hat{do}(X)] \ \delta &= (Y \mid X = 1) - (Y \mid X = 0) \ \delta &= Y_1 - Y_0 \end{aligned}$$



Fundamental problem of causal inference

$$\delta_i = Y_i^1 - Y_i^0 \quad ext{in real life is} \quad \delta_i = Y_i^1 - ???$$

Individual-level effects are impossible to observe!

There are no individual counterfactuals!

# **Average treatment effect (ATE)**

**Solution: Use averages instead** 

$$ATE = E(Y_1 - Y_0) = E(Y_1) - E(Y_0)$$

Difference between average/expected value when program is on vs. expected value when program is off

$$\delta = (ar{Y} \mid P = 1) - (ar{Y} \mid P = 0)$$

| Person | Age   | Treated | Outcome<br>with program | Outcome<br>without program | Effect |
|--------|-------|---------|-------------------------|----------------------------|--------|
| 1      | Old   | TRUE    | 80                      | 60                         | 20     |
| 2      | Old   | TRUE    | 75                      | 70                         | 5      |
| 3      | Old   | TRUE    | 85                      | 80                         | 5      |
| 4      | Old   | FALSE   | 70                      | 60                         | 10     |
| 5      | Young | TRUE    | 75                      | 70                         | 5      |
| 6      | Young | FALSE   | 80                      | 80                         | 0      |
| 7      | Young | FALSE   | 90                      | 100                        | -10    |
| 8      | Young | FALSE   | 85                      | 80                         | 5      |

| Person | Age   | Treated | Outcome<br>with program | Outcome<br>without program | Effect |
|--------|-------|---------|-------------------------|----------------------------|--------|
| 1      | Old   | TRUE    | 80                      | 60                         | 20     |
| 2      | Old   | TRUE    | 75                      | 70                         | 5      |
| 3      | Old   | TRUE    | 85                      | 80                         | 5      |
| 4      | Old   | FALSE   | 70                      | 60                         | 10     |
| 5      | Young | TRUE    | 75                      | 70                         | 5      |
| 6      | Young | FALSE   | 80                      | 80                         | 0      |
| 7      | Young | FALSE   | 90                      | 100                        | -10    |
| 8      | Young | FALSE   | 85                      | 80                         | 5      |

$$\delta = (ar{Y} \mid P = 1) - (ar{Y} \mid P = 0) \qquad ext{ATE} = rac{20 + 5 + 5 + 10 + 0 + -10 + 5}{8} = 5$$



**ATE in subgroups** 

Is the program more effective for specific age groups?

| Person | Age   | Treated | Outcome<br>with program | Outcome<br>without program | Effect |
|--------|-------|---------|-------------------------|----------------------------|--------|
| 1      | Old   | TRUE    | 80                      | 60                         | 20     |
| 2      | Old   | TRUE    | 75                      | 70                         | 5      |
| 3      | Old   | TRUE    | 85                      | 80                         | 5      |
| 4      | Old   | FALSE   | 70                      | 60                         | 10     |
| 5      | Young | TRUE    | 75                      | 70                         | 5      |
| 6      | Young | FALSE   | 80                      | 80                         | 0      |
| 7      | Young | FALSE   | 90                      | 100                        | -10    |
| 8      | Young | FALSE   | 85                      | 80                         | 5      |

$$egin{aligned} &\delta = (ar{Y}_{ ext{O}} \mid P = 1) - (ar{Y}_{ ext{O}} \mid P = 0) & ext{CATE}_{ ext{Old}} = rac{20 + 5 + 5 + 10}{4} = 10 \ &\delta = (ar{Y}_{ ext{Y}} \mid P = 1) - (ar{Y}_{ ext{Y}} \mid P = 0) & ext{CATE}_{ ext{Young}} = rac{5 + 0 - 10 + 5}{4} = 0 \end{aligned}$$

### **ATT and ATU**

### Average treatment on the treated



**Effect for those with treatment** 

Average treatment on the untreated



**Effect for those without treatment** 

| Person | Age   | Treated | Outcome<br>with program | Outcome<br>without program | Effect |
|--------|-------|---------|-------------------------|----------------------------|--------|
| 1      | Old   | TRUE    | 80                      | 60                         | 20     |
| 2      | Old   | TRUE    | 75                      | 70                         | 5      |
| 3      | Old   | TRUE    | 85                      | 80                         | 5      |
| 4      | Old   | FALSE   | 70                      | 60                         | 10     |
| 5      | Young | TRUE    | 75                      | 70                         | 5      |
| 6      | Young | FALSE   | 80                      | 80                         | 0      |
| 7      | Young | FALSE   | 90                      | 100                        | -10    |
| 8      | Young | FALSE   | 85                      | 80                         | 5      |

$$egin{aligned} &\delta = (ar{Y}_{
m T} \mid P = 1) - (ar{Y}_{
m T} \mid P = 0) & ext{CATE}_{
m Treated} = rac{20 + 5 + 5 + 5}{4} = 8.75 \ &\delta = (ar{Y}_{
m U} \mid P = 1) - (ar{Y}_{
m U} \mid P = 0) & ext{CATE}_{
m Untreated} = rac{10 + 0 - 10 + 5}{4} = 1.25 \end{aligned}$$

### ATE, ATT, and ATU

# The ATE is the weighted average of the ATT and ATU

$$egin{aligned} \mathrm{ATE} &= (\pi_{\mathrm{Treated}} imes \mathrm{ATT}) + (\pi_{\mathrm{Untreated}} imes \mathrm{ATU}) \ & (rac{4}{8} imes 8.75) + (rac{4}{8} imes 1.25) \ & 4.375 + 0.625 = 5 \end{aligned}$$

**π** here means "proportion," not 3.1415

### **Selection bias**

### ATE and ATT aren't always the same

### **ATE = ATT + Selection bias**

$$5 = 8.75 + x$$
  
 $x = -3.75$ 

#### Randomization fixes this, makes x = 0

| Person | Age   | Treated | Actual outcome |
|--------|-------|---------|----------------|
| 1      | Old   | TRUE    | 80             |
| 2      | Old   | TRUE    | 75             |
| 3      | Old   | TRUE    | 85             |
| 4      | Old   | FALSE   | 60             |
| 5      | Young | TRUE    | 75             |
| 6      | Young | FALSE   | 80             |
| 7      | Young | FALSE   | 100            |
| 8      | Young | FALSE   | 80             |

### Treatment not randomly assigned

We can't see unit-level causal effects

What do we do?!

| Person | Age   | Treated | Actual outcome |
|--------|-------|---------|----------------|
| 1      | Old   | TRUE    | 80             |
| 2      | Old   | TRUE    | 75             |
| 3      | Old   | TRUE    | 85             |
| 4      | Old   | FALSE   | 60             |
| 5      | Young | TRUE    | 75             |
| 6      | Young | FALSE   | 80             |
| 7      | Young | FALSE   | 100            |
| 8      | Young | FALSE   | 80             |

# Treatment seems to be correlated with age



| Person | Age   | Treated | Actual outcome |
|--------|-------|---------|----------------|
| 1      | Old   | TRUE    | 80             |
| 2      | Old   | TRUE    | 75             |
| 3      | Old   | TRUE    | 85             |
| 4      | Old   | FALSE   | 60             |
| 5      | Young | TRUE    | 75             |
| 6      | Young | FALSE   | 80             |
| 7      | Young | FALSE   | 100            |
| 8      | Young | FALSE   | 80             |

We can estimate the ATE by finding the weighted average of age-based CATEs

As long as we assume/pretend treatment was randomly assigned within each age = unconfoundedness



 $ATE = \pi_{Old}CATE_{Old} + \pi_{Young}CATE_{Young}$ 

| Dorson   | Δσο   | Treated | Actual outcome |
|----------|-------|---------|----------------|
| r er sun |       | TOUL    |                |
| 1        | Old   | TRUE    | 80             |
| 2        | Old   | TRUE    | 75             |
| 3        | Old   | TRUE    | 85             |
| 4        | Old   | FALSE   | 60             |
| 5        | Young | TRUE    | 75             |
| 6        | Young | FALSE   | 80             |
| 7        | Young | FALSE   | 100            |
| 8        | Young | FALSE   | 80             |

### iiiDON'T DO THIS!!!

$$\widehat{\text{ATE}} = \widehat{\text{CATE}_{\text{Treated}}} - \widehat{\text{CATE}_{\text{Untreated}}}$$

| Person | Age   | Treated | Actual outcome |
|--------|-------|---------|----------------|
| 1      | Old   | TRUE    | 80             |
| 2      | Old   | TRUE    | 75             |
| 3      | Old   | TRUE    | 85             |
| 4      | Old   | FALSE   | 60             |
| 5      | Young | TRUE    | 75             |
| 6      | Young | FALSE   | 80             |
| 7      | Young | FALSE   | 100            |
| 8      | Young | FALSE   | 80             |

$$CATE_{Treated} = \frac{80+75+85+75}{4} = 78.75$$
$$CATE_{Untreated} = \frac{60+80+100+80}{4} = 80$$
$$\widehat{ATE} = 78.75 - 80 = -1.25$$

You can only do this if treatment is random!

### **Matching and ATEs**

 $ATE = \pi_{Old}CATE_{Old} + \pi_{Young}CATE_{Young}$ 

We used age here because it correlates with (and confounds) the outcome

> And we assumed unconfoundedness; that treatment is randomly assigned within the groups

Age Treatment Outcome

|                    |         |        | Private |       |           | Public     |                  |                  |
|--------------------|---------|--------|---------|-------|-----------|------------|------------------|------------------|
| Applicant<br>group | Student | Ivy    | Leafy   | Smart | All State | Tall State | Altered<br>State | 1996<br>earnings |
| A                  | 1       |        | Reject  | Admit |           | Admit      |                  | 110,000          |
|                    | 2       |        | Reject  | Admit |           | Admit      |                  | 100,000          |
|                    | 3       |        | Reject  | Admit |           | Admit      |                  | 110,000          |
| В                  | 4       | Admit  |         |       | Admit     |            | Admit            | 60,000           |
|                    | 5       | Admit  |         |       | Admit     |            | Admit            | 30,000           |
| С                  | 6       |        | Admit   |       |           |            |                  | 115,000          |
|                    | 7       |        | Admit   |       |           |            |                  | 75,000           |
| D                  | 8       | Reject |         |       | Admit     | Admit      |                  | 90,000           |
|                    | 9       | Reject |         |       | Admit     | Admit      |                  | 60,000           |

TABLE 2.1 The college matching matrix

Note: Enrollment decisions are highlighted in gray.

### Does attending a private university cause an increase in earnings?

TABLE 2.1 The college matching matrix

|                    |         |        | Private |       |           | Public     |                  |                  |
|--------------------|---------|--------|---------|-------|-----------|------------|------------------|------------------|
| Applicant<br>group | Student | Ivy    | Leafy   | Smart | All State | Tall State | Altered<br>State | 1996<br>earnings |
| А                  | 1       |        | Reject  | Admit |           | Admit      |                  | 110,000          |
|                    | 2       |        | Reject  | Admit |           | Admit      |                  | 100,000          |
|                    | 3       |        | Reject  | Admit |           | Admit      |                  | 110,000          |
| В                  | 4       | Admit  |         |       | Admit     |            | Admit            | 60,000           |
|                    | 5       | Admit  |         |       | Admit     |            | Admit            | 30,000           |
| С                  | 6       |        | Admit   |       |           |            |                  | 115,000          |
|                    | 7       |        | Admit   |       |           |            |                  | 75,000           |
| D                  | 8       | Reject |         |       | Admit     | Admit      |                  | 90,000           |
|                    | 9       | Reject |         |       | Admit     | Admit      |                  | 60,000           |

This is tempting!

### Average private -Average public





Note: Enrollment decisions are highlighted in gray.



# **Grouping and matching**

| The college matching matrix |         |        |         |       |           |            |                  |                  |  |
|-----------------------------|---------|--------|---------|-------|-----------|------------|------------------|------------------|--|
|                             |         |        | Private |       |           | Public     |                  |                  |  |
| Applicant<br>group          | Student | Ivy    | Leafy   | Smart | All State | Tall State | Altered<br>State | 1996<br>earnings |  |
| А                           | 1       |        | Reject  | Admit |           | Admit      |                  | 110,000          |  |
|                             | 2       |        | Reject  | Admit |           | Admit      |                  | 100,000          |  |
|                             | 3       |        | Reject  | Admit |           | Admit      |                  | 110,000          |  |
| В                           | 4       | Admit  |         |       | Admit     |            | Admit            | 60,000           |  |
|                             | 5       | Admit  |         |       | Admit     |            | Admit            | 30,000           |  |
| С                           | 6       |        | Admit   |       |           |            |                  | 115,000          |  |
|                             | 7       |        | Admit   |       |           |            |                  | 75,000           |  |
| D                           | 8       | Reject |         |       | Admit     | Admit      |                  | 90,000           |  |
|                             | 9       | Reject |         |       | Admit     | Admit      |                  | 60,000           |  |

TABLE 2.1

Note: Enrollment decisions are highlighted in gray.

# These groups look like they have similar characteristics

**Unconfoundedness?** 



| TABLE 2.1                   |
|-----------------------------|
| The college matching matrix |

| Applicant<br>group | Student | Private |        |       | Public    |            |                  |                  |
|--------------------|---------|---------|--------|-------|-----------|------------|------------------|------------------|
|                    |         | Ivy     | Leafy  | Smart | All State | Tall State | Altered<br>State | 1996<br>earnings |
| A                  | 1       |         | Reject | Admit |           | Admit      |                  | 110,000          |
|                    | 2       |         | Reject | Admit |           | Admit      |                  | 100,000          |
|                    | 3       |         | Reject | Admit |           | Admit      |                  | 110,000          |
| В                  | 4       | Admit   |        |       | Admit     |            | Admit            | 60,000           |
|                    | 5       | Admit   |        |       | Admit     |            | Admit            | 30,000           |
| С                  | 6       |         | Admit  |       |           |            |                  | 115,000          |
|                    | 7       |         | Admit  |       |           |            |                  | 75,000           |
| D                  | 8       | Reject  |        |       | Admit     | Admit      |                  | 90,000           |
|                    | 9       | Reject  |        |       | Admit     | Admit      |                  | 60,000           |

CATE Group A + CATE Group B

$$egin{aligned} rac{110+100}{2} - 110 &= -5,000\ &60 - 30 &= 30,000\ &(-5 imesrac{3}{5}) + (30 imesrac{2}{5}) &= 9,000 \end{aligned}$$

This is less wrong!

Note: Enrollment decisions are highlighted in gray.



# Matching with regression

$$Earnings = \alpha + \beta_1 Private + \beta_2 Group + \epsilon$$

model\_earnings <- lm(earnings ~ private + group\_A, data = schools\_small)</pre>

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 40000    | 11952.29  | 3.35      | 0.08    |
| privateTRUE | 10000    | 13093.07  | 0.76      | 0.52    |
| group_ATRUE | 60000    | 13093.07  | 4.58      | 0.04    |



This is less wrong!

Significance details!